

Properties of SASE FEL pulses

Yuelin Li

¹Advanced Photon Source, Argonne National Laboratory

What determines the FEL property

The field of a SASE FEL (by solving Green's function) is

$$\begin{split} E(t,z) &= E_0(z) \sum_{j=i}^{N_e} \exp \left[i \omega_0 [1 + c \frac{\sigma_\delta}{\sigma_z} (t - t_0)] (t - t_j) - \frac{(t - t_j - z/v_g)^2}{4\sigma_t^2} (1 - \frac{i}{\sqrt{3}}) \right], \\ &\approx E_0(z) \sum_{j=i}^{N_e} \exp \left[i \omega_0 (t - t_j) - \frac{(t - t_j - z/v_g)^2}{4\sigma_t^2} \right]. \end{split}$$

[S. Krinsky and Z. Huang, Phys. Rev. ST Accel. Beams 6, 050702 (2003).]

$$\omega_0$$
 resonant frequency $\omega_0 = \frac{4\pi c \gamma_0^2}{\lambda_u (1 + K^2/2)}$

$$\sigma_{\rm t}$$
 coherence length $\sigma_{\rm t} = \frac{1}{2\omega_0} \sqrt{\frac{z}{\rho \lambda_u}} \propto n_e^{-1/4}$

 $\sigma_{\delta}/\sigma_{z}$ electron beam energy chirp

Summing of random phasors: Chaotic light

Goodman, Statistical Optics, (John Wiley & Sons, New York, 1985), p. 35. S. Krinsky, PRSTAB 6, 050701 (2003).

But the result is remarkable

How is the coherence built

LA-UR 09-01205

Resonance Condition

Question: How can an optical wave traveling at the speed of light interact with slower electrons in a fast wave device (e.g., FEL)?

<u>Answer</u>: If the optical wave slips ahead of the electrons exactly one wavelength every wiggler period, the sum of wiggler phase and optical phase is constant, and energy exchange can occur.

$$\frac{\theta = (k_w + k)z - \omega t = const.}{\frac{d\theta}{dz} = k_w + k - \frac{\omega}{\overline{\upsilon}_z}} = 0$$

$$k_w + k = \frac{k}{\left[1 - \frac{1 + a_w^2}{2\gamma^2}\right]} \approx k + k \left(\frac{1 + a_w^2}{2\gamma^2}\right)$$

Resonance wavelength satisfies this condition

$$\lambda_{w} + \lambda = \frac{\lambda_{w}}{\overline{\nu}_{z}} c$$

$$k_{w} = k \left(\frac{1 + a_{w}^{2}}{2\gamma^{2}} \right) \longrightarrow \lambda = \lambda_{w} \left(\frac{1 + a_{w}^{2}}{2\gamma^{2}} \right)$$

US Particle Accelerator School 2009 University of New Mexico - Albuquerque NM

1-63

The FEL parameter

High-Gain FEL

Dimensionless Pierce parameter as a function of k_w (left) or λ_w (right)

$$\rho = \frac{1}{2\gamma} \left(\frac{\left[JJ \right] a_w}{\sigma k_w} \right)^{\frac{2}{3}} \left(\frac{I}{I_A} \right)^{\frac{1}{3}}$$

$$\rho = \frac{1}{\gamma} \left(\frac{\left[JJ \right] a_w \lambda_w}{4\sqrt{2}\pi\sigma} \right)^{\frac{2}{3}} \left(\frac{I}{I_A} \right)^{\frac{1}{3}}$$

Recall JJ is the difference between J_0 and J_1 Bessel functions of argument ξ

$$\left[J\!J\right]\!=J_{\scriptscriptstyle 0}\left(\xi\right)\!-J_{\scriptscriptstyle 1}\!\left(\xi\right)$$

$$J_0(\xi) \approx 1 - \frac{\xi^2}{4}$$

$$J_1\!\left(\xi
ight)\!pprox\!rac{\xi}{2}$$

$$[JJ] \approx 1 - \frac{\xi}{2} - \frac{\xi^2}{4}$$

where

$$\xi = \frac{a_w^2}{2\left(1 + a_w^2\right)}$$

High gain FEL is applicable in a long wiggler driven by a high-brightness electron beam (one with high peak current and small emittance). The wiggler length must be significantly longer than the power gain length, given by

Power gain length

$$L_G = \frac{\lambda_w}{4\pi\sqrt{3}\rho}$$

LA-UR 09-01205

US Particle Accelerator School 2009 University of New Mexico - Albuquerque NM

1-90

The coherence length rough estimate

$$L_{c} \approx \frac{L_{G}}{\lambda_{w}} \lambda = \frac{\lambda_{w}}{4\pi\sqrt{3}\rho} \frac{1}{\lambda_{w}} \lambda = \frac{\lambda}{4\pi\sqrt{3}\rho}$$

$$I \qquad 1$$

$$\sigma_{t} = \frac{L_{c}}{c} = \frac{1}{2\omega\sqrt{3}\rho}$$

$$\sigma_{\omega} = \frac{\sqrt{\pi}}{\sigma_{t}} = 2\omega\sqrt{3\pi}\rho.$$

$$\sigma_{t} = \frac{1}{2\omega_{0}} \sqrt{\frac{z}{\rho \lambda_{u}}}$$

$$\sigma_{\omega} = \omega_r \sqrt{3\sqrt{3}\rho/k_u z}$$

Total energy fluctuation

$$\begin{split} \boldsymbol{M} \approx & \frac{T_B}{\boldsymbol{\sigma}_t} \\ \boldsymbol{p}(E) = & \frac{\boldsymbol{M}^M}{\Gamma(M)} \left(\frac{E}{\langle E \rangle} \right)^{M-1} \frac{1}{\langle E \rangle} \exp \left(-M \frac{E}{\langle E \rangle} \right) \end{split}$$

2004 SPIE Annual Meeting, Denver, Aug 2-6

The FROG experiment at 530 nm

The single-shot FROG technique

= Frequency Resolved Optical Gating

Kane and Trebino, JQE, 29, 571 (1993). DeLong and Trebino, JOSA B, 11, 2206 (1994).

For the second harmonic FROG

$$E_{sig}(t,\tau) \propto E(t)E(t-\tau).$$

And the measured signal on the spectrometer is

$$I_{FROG}(\omega, \tau) \propto \left| \int_{-\infty}^{\infty} E_{sig}(t, \tau) \exp(-i\omega t) dt \right|^{2}.$$

Temporal structure: spike width and spacing

Follow statistics for chaotic light exactly.

$$\langle \Delta \tau \rangle = 52 \text{ fs}$$

Li et al., PRL 91 243602 (2003).

Derivative of phase (frequency)

Each intensity spike is a coherence mode.

 σ_{ω} =0.0094 rad/fs

Li et al., PRL 91 243602 (2003).

Number of spikes in the two domains

Experiment B

Correlation between the time and frequency domains

		Measured	Calculated
Rms width	Time $\bar{\sigma}_t$ (fs)	83	
	Frequency $\bar{\sigma}_{\omega}$ (mrad/fs)	11	
Rms spike width	Time $\langle \delta t \rangle$ (fs)	52	$\langle \delta t \rangle = 1/\sqrt{2} \bar{\sigma}_{\omega} = 64$
	Frequency $\langle \delta \omega \rangle$ (mrad/fs)	7.9	$\langle \delta \omega \rangle = 1/\sqrt{2} \bar{\sigma}_t = 8.5$
Average spike spacing	Time $\langle \Delta t \rangle$ (fs)	208	$\langle \Delta t \rangle = \sqrt{2\pi} / \bar{\sigma}_{\omega} = 228$
	Frequency $\langle \Delta \omega \rangle$ (mrad/fs)	20	$\langle \Delta \omega \rangle = \sqrt{2\pi} / \bar{\sigma}_t = 30$
Coherence range	Time T_{coh} (fs)	$T_{coh} = \sqrt{2\pi} \left\langle \mathcal{S}t \right\rangle = 130$	$T_{coh} = \sqrt{\pi} / \bar{\sigma}_{\omega} = 156$
	Frequency Ω_{coh} (mrad/fs)	$\Omega_{coh} = \sqrt{2\pi} \left<\delta\omega\right> = 19$	$\Omega_{coh} = \sqrt{\pi} \ / ar{\sigma}_t = 21$
Mode #	M	$M = 2\bar{\sigma}_{\omega}\bar{\sigma}_{t} = 1.8$	$M = 1/(\sigma_W/\langle W \rangle)^2 = 2.6$

The two domains should have about the same number of intensity spikes